ffscraper

Yet another Python package for scraping FanFiction.Net…

pip install ffscraper

Authors:Alexander L. Hayes
Version:0.2.0
Documentation:Module Index
Search:Search Page
Source:GitHub
Bugtracker:GitHub Issues

License Travis CI continuous integration build status Code coverage status Documentation status

FanFiction.Net was established in 1998 and is among the world’s largest collection of user-submitted fanfiction (works of fanfiction authored by fans of existing stories; such as movies, books, or TV shows). Recently the large amount of easily-available user content has drawn interest in analyzing the content and creative differences between original works and their fanfiction counterparts [1], and [2] created an anonymized dataset of the metadata.

This project is twofold: creating open-source systems for scraping content, and using that content to build open-source systems which can be used by the FanFiction.Net community.

Installation and Usage

Interact with the scraper from the commandline:

$ pip install ffscraper
$ python -m ffscraper --help
$ python -m ffscraper -s 123

Or import the Python package and start building your own systems:

import ffscraper as ffs

sids = ['123', '124', '125']

for id in sids:
    story = ffs.fanfic.story.scraper(id)
    print(story)

ffscraper package

Subpackages

ffscraper.author package

Submodules
ffscraper.author.beta module
ffscraper.author.profile module
Module contents

ffscraper.fanfic package

Submodules
ffscraper.fanfic.metadata module
ffscraper.fanfic.review module
ffscraper.fanfic.story module
Module contents

ffscraper.format package

Submodules
ffscraper.format.cytoscape module
ffscraper.format.predicate module
Module contents

ffscraper.nlp package

Submodules
ffscraper.nlp.index module
Module contents

ffscraper.storyid package

Submodules
Module contents
ffscraper.storyid.download module

Submodules

ffscraper.utils module

Module contents

[1]Milli, Smitha and David Bamman, “Beyond Canonical Texts: A Computational Analysis of Fanfiction.” Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
[2]Yin, K., Aragon, C., Evans, S. and Katie Davis. “Where No One Has Gone Before: A Meta-Dataset of the World’s Largest Fanfiction Repository.” Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017.